माना $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x > 0$ के प्रसार में $x ^{-1}$ तथा $x ^{-3}$ के गुणांक क्रमश: $m$ तथा $n$ है। यदि धनात्मक पूर्णांक $r$ इस प्रकार है कि $m n^2={ }^{15} C _{ r } .2^{ r }$ है, तो $r$ का मान है।
$3$
$4$
$5$
$6$
${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ के विस्तार में $x$ से स्वतंत्र पद होगा
$8(x+a)^{n}$ के द्विपद प्रसार के दूसरे, तीसरे और चौथे पद क्रमश: $240,720$ और $1080$ हैं। $x, a$ तथा $n$ ज्ञात कीजिए।
$\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$ के द्विपद प्रसार में परिमेय पदों की संख्या है ...... |
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद है
यदि $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ के प्रसार में $x^9$ का गुणांक एवं $\left(\alpha \mathrm{x}-\frac{1}{\beta \mathrm{x}^3}\right)^{11}$ के प्रसार में $\mathrm{x}^{-9}$ का गुणांक बराबर हैं तब $(\alpha \beta)^2$ बराबर है____________.