In the expansion of $(1 + x + y + z)^4$ the ratio of coefficient of $x^2y, xy^2z, xyz$ are

  • A

    $1 : 1 : 2$

  • B

    $2 : 1 : 1$

  • C

    $1 : 2 : 1$

  • D

    Not defined

Similar Questions

Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{ n }$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is $...........$.

  • [JEE MAIN 2023]

For $\mathrm{r}=0,1, \ldots, 10$, let $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$ and $\mathrm{C}_{\mathrm{r}}$ denote, respectively, the coefficient of $\mathrm{x}^{\mathrm{r}}$ in the expansions of $(1+\mathrm{x})^{10}$, $(1+\mathrm{x})^{20}$ and $(1+\mathrm{x})^{30}$. Then $\sum_{r=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)$ is equal to

  • [IIT 2010]

The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is

If ${x^m}$occurs in the expansion of ${\left( {x + \frac{1}{{{x^2}}}} \right)^{2n}},$ then the coefficient of ${x^m}$ is

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to