$(1 + x + y + z)^4$ ના વ્સિતરણમાં $x^2y, xy^2z, xyz$ ના સહગુણકોનો ગુણોત્તર મેળવો
$1 : 1 : 2$
$2 : 1 : 1$
$1 : 2 : 1$
શકય નથી
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$ ના વિસ્તરણનું $13$ મું પદ શોધો.
ધારો કે $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$ નું દ્રીપદી વિસ્તરણ એ $2^{(x-2) \log _2 3}$ની વધતી ધાતમાં લઈએ,તો તેનું છઠ્ઠું પદ $21$ છે.જો આ દ્રીપદી વિસ્તરણના બીજા,ત્રીજા અને ચોથા પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણી ણા પ્રથમ,ત્રીજા અને પાંચમાં પદો હોય,તો $x$ની શક્ય તમામ કિમતોના વર્ગોનો સરવાળો $..............$ છે.
જો ${[x + {x^{{{\log }_{10}}}}^{(x)}]^5}$ ના વિસ્તરણમાં ત્રીજું પદ $10,00,000$ હોય તો $x$ મેળવો.
જો $x^7$ & $x^8$ નો સહગુણક ${\left[ {2\,\, + \,\,\frac{x}{3}} \right]^n}$ ના વિસ્તરણમાં સરખા હોય તો $n$ ની કિમત મેળવો
$\left(2 x^2+\frac{1}{2 x}\right)^{11}$ ના વિસ્તરણમાં $x^{10}$ અને $x^7$ ના સહગુણકોનો નિરપેક્ષ તફાવત $........$ છે.