In the expression for time period $T$ of simple pendulum $T=2 \pi \sqrt{\frac{l}{g}}$, if the percentage error in time period $T$ and length $l$ are $2 \%$ and $2 \%$ respectively then percentage error in acceleration due to gravity $g$ is equal to ......... $\%$

  • A

    $8$

  • B

    $2$

  • C

    $4$

  • D

    $6$

Similar Questions

The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is $\left(\frac{x}{100}\right) \% .$ If the relative errors in measuring the mass and the diameter are $6.0 \%$ and $1.5 \%$ respectively, the value of $x$ is

  • [JEE MAIN 2020]

The period of oscillation of a simple pendulum is $T=2\pi \sqrt {\frac{l}{g}} $. Measured value of $L$ is $20.0\; cm$ known to $1\; mm$ accuracy and time for $100$ oscillations of the pendulum is found to be $90\ s$ using a wrist watch of $1\; s$ resolution. The accuracy in the determination of $g$ is   ........ $\%$

  • [JEE MAIN 2015]

A physical quantity is $A = P^2/Q^3.$ The percentage error in measurement of $P$ and $Q$ is $x$ and $y$ respectively. Maximum error in measurement of $A$ is

The two specific heat capacities of a gas are measured as $C_P = (12.28 \pm 0.2)\, units$ and $C_V = (3.97 \pm 0.3)\, unit$. Find the value of the gas constant $(R)$

Following observations were taken with a vernier callipers while measuring the length of a cylinder

$3.29 \,cm, 3.28\, cm, 3.29 \,cm, 3.31 \,cm,$ $ 3.28\, cm, 3.27 \,cm, 3.29 \,cm, 3.30\, cm$

Then find Absolute error in forth and eighth observation