In the figure shown, there is friction between the blocks $P$ and $Q$ but the contact between the block $Q$ and lower surface is frictionless. Initially the block $Q$ with block $P$ over it lies at $x=0$, with spring at its natural length. The block $Q$ is pulled to right and then released. As the spring - blocks system undergoes $S.H.M.$ with amplitude $A$, the block $P$ tends to slip over $Q . P$ is more likely to slip at
$x=0$
$x=+A$
$x=+\frac{A}{2}$
$x=+\frac{A}{\sqrt{2}}$
A man weighing $60\, kg$ stands on the horizontal platform of a spring balance. The platform starts executing simple harmonic motion of amplitude $0.1\, m$ and frequency $\frac{2}{\pi }Hz$. Which of the following statement is correct
Figure $(a)$ shows a spring of force constant $k$ clamped rigidly at one end and a mass $m$ attached to its free end. A force $F$ applied at the free end stretches the spring. Figure $(b)$ shows the same spring with both ends free and attached to a mass $m$ at etther end. Each end of the spring in Figure $( b )$ is stretched by the same force $F.$
$(a)$ What is the maximum extension of the spring in the two cases?
$(b)$ If the mass in Figure $(a)$ and the two masses in Figure $(b)$ are released, what is the period of oscillation in each case?
In arrangement given in figure, if the block of mass m is displaced, the frequency is given by
In an elevator, a spring clock of time period $T_S$ (mass attached to a spring) and a pendulum clock of time period $T_P$ are kept. If the elevator accelerates upwards
Two identical springs of spring constant $k$ are attached to a block of mass $m$ and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance $x$ towards right, find the restoring force.