13.Oscillations
medium

Two identical springs have the same force constant $73.5 \,Nm ^{-1}$. The elongation produced in each spring in three cases shown in Figure-$1$, Figure-$2$ and Figure-$3$ are $\left(g=9.8 \,ms ^{-2}\right)$

A

$\frac{1}{6} \,m, \frac{2}{3} \,m, \frac{1}{3} \,m$

B

$\frac{1}{3} \,m, \frac{1}{3} \,m, \frac{1}{3} \,m$

C

$\frac{2}{3} \,m, \frac{1}{3} \,m, \frac{1}{6} \,m$

D

$\frac{1}{3} \,m, \frac{4}{3} \,m, \frac{2}{3} \,m$

Solution

(d)

$k=73.5 \,Nm ^{-1} \quad \text { Force }=5 \times 9.8$

In figure $(1)$

$5 \times 9.8=(2 k) x_1$

$\therefore x_1=\frac{5 \times 9.8}{2 \times 73.5}=\frac{1}{3}$

In figure $(2)$

$5 \times 9.8=\frac{k \times k}{k+k} \times x_2$

or $5 \times 9.8=\frac{k}{2} \times x_2$

$x_2=\frac{98}{73.5}=\frac{4}{3}$

In figure $(3)$

$5 \times 9.8=k x_3$

$x_3=\frac{5 \times 9.8}{73.5}=\frac{2}{3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.