In the following four situations charged particles are at equal distance from the origin. Arrange them the magnitude of the net electric field at origin greatest first
$(i) > (ii) > (iii) > (iv)$
$(ii) > (i) > (iii) > (iv)$
$(i) > (iii) > (ii) > (iv)$
$(iv) > (iii) > (ii) > (i)$
A liquid drop having $6$ excess electrons is kept stationary under a uniform electric field of $25.5\, k\,Vm^{-1}$ . The density of liquid is $1.26\times10^3\, kg\, m^{-3}$ . The radius of the drop is (neglect buoyancy)
Two identical point charges are placed at a separation of $d$. $P$ is a point on the line joining the charges, at a distance $x$ from any one charge. The field at $P$ is $E$, $E$ is plotted against $x$ for values of $x$ from close to zero to slightly less than $d$. Which of the following represents the resulting curve
The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is
Three charged particle $A, B$ and $C$ with charges $-4 q, 2 q$ and $-2 q$ are present on the circumference of a circle of radius $d$. the charged particles $A, C$ and centre $O$ of the circle formed an equilateral triangle as shown in figure. Electric field at $O$ along $x-$direction is
A drop of ${10^{ - 6}}\,kg$ water carries ${10^{ - 6}}\,C$ charge. What electric field should be applied to balance its weight (assume $g = 10\,m/{s^2}$)