Two charges $q$ and $3 q$ are separated by a distance ' $r$ ' in air. At a distance $x$ from charge $q$, the resultant electric field is zero. The value of $x$ is :

  • [JEE MAIN 2024]
  • A

    $\frac{(1+\sqrt{3})}{r}$

  • B

    $\frac{\mathrm{r}}{3(1+\sqrt{3})}$

  • C

    $\frac{r}{(1+\sqrt{3})}$

  • D

    $r(1+\sqrt{3})$

Similar Questions

A tiny $0.50\, gm$ ball carries a charge of magnitude $10\, \mu C$. It is suspended by a thread in a downward electric field of intensity $300\, N/C$. If the charge on the ball is positive, then the tension in the string is

The bob of a simple pendulum has mass $2\,g$ and a charge of $5.0\,\mu C$. It is at rest in a uniform horizontal electric field of intensity $2000\,\frac{V}{m}$. At equilibrium, the angle that the pendulum makes with the vertical is (take $g = 10\,\frac{m}{{{s^2}}}$)

  • [JEE MAIN 2019]

A half ring of radius $R$ has a charge of $\lambda$ per unit length. The electric force on $1\, C$ charged placed at the centre is

  • [AIIMS 2018]

An infinite number of electric charges each equal to $5\, nC$ (magnitude) are placed along $X$-axis at $x = 1$ $cm$, $x = 2$ $cm$ , $x = 4$ $cm$ $x = 8$ $cm$ ………. and so on. In the setup if the consecutive charges have opposite sign, then the electric field in Newton/Coulomb at $x = 0$ is $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$

The electric field intensity at a point in vacuum is equal to