Gujarati
Hindi
10-1.Circle and System of Circles
normal

In the given figure, $AB$ is tangent to the circle with centre $O$ , the ratio of the shaded region to the unshaded region of the triangle $OAB$ is

A

$\frac{{2\sqrt 3  - 2}}{\pi }$

B

$\frac{{3\sqrt 3  - 2}}{\pi }$

C

$\frac{{2 - \sqrt 3 }}{\pi }$

D

$\frac{{3\sqrt 3 }}{\pi } - 1$

Solution

In $\Delta \mathrm{AOB}, \mathrm{AB}=2 \tan 60^{\circ}=2 \sqrt{3}$

$\Rightarrow$ Area of $\Delta \mathrm{AOB}=\frac{1}{2} \times 2 \times 2 \sqrt{3}=2 \sqrt{3}$

Area of sector $\mathrm{O} \mathrm{AC}=\frac{60}{360} \pi(2)^{2}=\frac{2 \pi}{3}$

$\Rightarrow$ Ratio $=\frac{2 \sqrt{3}-\frac{2 \pi}{3}}{\frac{2 \pi}{3}}=\frac{3 \sqrt{3}}{\pi}-1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.