The equations of the tangents to the circle ${x^2} + {y^2} = {a^2}$ parallel to the line $\sqrt 3 x + y + 3 = 0$ are
$\sqrt 3 x + y \pm 2a = 0$
$\sqrt 3 x + y \pm a = 0$
$\sqrt 3 x + y \pm 4a = 0$
None of these
Let $C$ be the circle with centre at $(1, 1)$ and radius $= 1$. If $T$ is the circle centred at $(0, y),$ passing through origin and touching the circle $C$ externally, then the radius of $T$ is equal
The tangents are drawn from the point $(4, 5)$ to the circle ${x^2} + {y^2} - 4x - 2y - 11 = 0$. The area of quadrilateral formed by these tangents and radii, is .............. $\mathrm{sq.\, units}$
The line $x\cos \alpha + y\sin \alpha = p$will be a tangent to the circle ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$, if $p = $
Statement $1$ : The only circle having radius $\sqrt {10} $ and a diameter along line $2x + y = 5$ is $x^2 + y^2 - 6x +2y = 0$.
Statement $2$ : $2x + y = 5$ is a normal to the circle $x^2 + y^2 -6x+2y = 0$.
Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to