In the given figure, two elastic rods $A$ & $B$ are rigidly joined to end supports. $A$ small mass $‘m’$ is moving with velocity $v$ between the rods. All collisions are assumed to be elastic & the surface is given to be frictionless. The time period of small mass $‘m’$ will be : [$A=$ area of cross section, $Y =$ Young’s modulus, $L=$ length of each rod ; here, an elastic rod may be treated as a spring of spring constant $\frac{{YA}}{L}$ ]

816-3

  • A

    $\frac{{2L}}{v} + 2\pi \sqrt {\frac{{mL}}{{AY}}}$

  • B

    $\frac{{2L}}{v} + 2\pi \sqrt {\frac{{2mL}}{{AY}}}$

  • C

    $\frac{{2L}}{v} + \pi \sqrt {\frac{{mL}}{{AY}}}$

  • D

    $\frac{{2L}}{v}$

Similar Questions

A wire of length $L$ and radius $r$  is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$ its length increases by $l$. Another wire of the same material of length $2L$ and radius $2r$  is pulled by a force $2f$. Then find the increase in length of this wire.

Two wires are made of the same material and have the same volume. However wire $1$ has crosssectional area $A$ and wire $2$ has cross-section area $3A$. If the length of wire $1$ increases by $\Delta x$ on applying force $F$, how much force is needed to stretch wire $2$ by the same amount?

A force is applied to a steel wire ' $A$ ', rigidly clamped at one end. As a result elongation in the wire is $0.2\,mm$. If same force is applied to another steel wire ' $B$ ' of double the length and a diameter $2.4$ times that of the wire ' $A$ ', the elongation in the wire ' $B$ ' will be $............\times 10^{-2}\,mm$ (wires having uniform circular cross sections)

  • [JEE MAIN 2023]

Two exactly similar wires of steel and copper are stretched by equal forces. If the total elongation is $2 \,cm$, then how much is the elongation in steel and copper wire respectively? Given, $Y_{\text {steel }}=20 \times 10^{11} \,dyne / cm ^2$, $Y_{\text {copper }}=12 \times 10^{11} \,dyne / cm ^2$

A load $W$ produces an extension of $1mm$ in a thread of radius $r.$ Now if the load is made $4W$ and radius is made $2r$ all other things remaining same, the extension will become..... $mm$