In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is
$5050$
$-5050$
$100$
$99$
$\sum_{\mathrm{k}=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2}$ is equal to :
If $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ then $n$ is equal to
If ${a_k} = \frac{1}{{k(k + 1)}},$ for $k = 1,\,2,\,3,\,4,.....,\,n$, then ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $
For natural numbers $m,n$ ,if ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$ and $a_1= a_2=10,$ then $(m,n)$ =______.
The sum of the coefficients of even power of $x$ in the expansion of ${(1 + x + {x^2} + {x^3})^5}$ is