In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is

  • A

    $5050$

  • B

    $-5050$

  • C

    $100$

  • D

    $99$

Similar Questions

If $(1 -x + x^2)^n = a_0 + a_1x + a_2x^2 + ....... + a_{2n}x^{2n}$, then $a_0 + a_2 + a_4 +........+ a_{2n}$ is equal to

Let $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. If $5 \alpha=6 \beta$, then $n$ equals

  • [JEE MAIN 2024]

Let ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$

Statement $-1$:${s_3} = 55 \times {2^9}$

Statement $-2$: ${s_1} = 90 \times {2^8}\;$ and ${s_2} = 10 \times {2^8}$ 

  • [AIEEE 2010]

What is the coefficient of $x^{100}$ in $(1 + x + x^2 + x^3 +.... + x^{100})^3$ ?

The number $111......1 $ ( $ 91$ times) is