બહુપદી $(x - 1)(x - 2)(x - 3).............(x - 100)$ ના વિસ્તરણમાં ${x^{99}}$ નો સહગુણક મેળવો.
$5050$
$-5050$
$100$
$99$
${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..
${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.
જો $(1 + x - 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + .........$ હોય તો $a_0 - a_1 + a_2 - a_3 + ..... $ નો છેલ્લો અંક મેળવો
જો ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ ,${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ અને $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ તથા $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ ,હોય તો $\frac{P}{{2Q}}$ ની કિમત મેળવો
વિધાન $1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$
વિધાન $2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$