Ionisation constant of $CH_3COOH$ is $1.7 \times 10^{-5}$ and concentration of $H^+$ ions is $3.4 \times 10^{-4}$. Then find out initial concentration of $CH_3COOH$ Molecules

  • A

    $3.4 \times {10^{ - 4}}$

  • B

    $3.4 \times {10^{ - 3}}$

  • C

    $6.8 \times {10^{ - 4}}$

  • D

    $6.8 \times {10^{ - 3}}$

Similar Questions

$p{K_a}$ of a weak acid is defined as

$pH$ of an aqueous solution $H_2CO_3$ is $3.3$. If ${K_{{a_1}}} = {10^{ - 3}}$and ${K_{{a_2}}} = {10^{ - 13}}$ then $[HCO_3^-]$ is

Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The  $pK _{ b }$ of ammonia solution is $4.75$

A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$

Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.