Derive ${K_a} \times {K_b} = {K_w}$ equation.
$\mathrm{NH}_{3}$ (ammonia) is a weak base and conjugate acid of $\mathrm{NH}_{3}$ is $\mathrm{NH}_{4}^{+}$. Following equilibrium is established in $\mathrm{NH}_{3}$.
$(i)$ $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} \quad\left(\right.$ Suppose $\left.\mathrm{K}_{b}=1.8 \times 10^{-5}\right)$
$\mathrm{NH}_{4}^{+}$is a conjugate acid of $\mathrm{NH}_{3}$. Its equilibrium in aqueous solution act as acid is following.
$(ii)$ $\mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{NH}_{3(\mathrm{aq})}$
Take ionization constant of weak acid $\mathrm{NH}_{4}^{+}$is $\mathrm{K}_{a}$ '
$\mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}$(Suppose $\mathrm{K}_{a}=5.6 \times 10^{-10}$ )
Addition of reaction $(i)$ and $(ii)$ and net reaction is,$(i)$ $+$ $(ii)$ $=$2$ \mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{OH}_{(\text {aq })}^{-}$
This reaction is self equilibrium of water,
$\mathrm{K}_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\mathrm{~K}_{b}$ reaction of (i) $\times \mathrm{K}_{a}$ reaction of (ii),
$\therefore \mathrm{K}_{a} \times \mathrm{K}_{b}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
$\therefore \mathrm{K}_{a} \times \mathrm{K}_{b}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{w} \quad \ldots . .($ Eq.-$i)$
e.g., $\left(5.8 \times 10^{-10}\right)\left(1.8 \times 10^{-5}\right)=1.0 \times 10^{-14}$
This can be extended to make a generalisation. Thus, one reaction equilibrium constant $=\mathrm{K}_{1}$
and second reaction equilibrium constant $=\mathrm{K}_{2}$ and reaction $(1)$ $+$ reaction $(2)$ $=$ reaction $(3)$
So, Reaction ($iii$) $\mathrm{K}_{3}=\mathrm{K}_{1} \times \mathrm{K}_{2} \quad \ldots .$ (Eq.-$ii$)
The ionization constant of benzoic acid is $6.5 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate $pH$ of its $0.15$ $M$ solution.
A weak acid $HA$ has a $K_a$ of $1.00 \times 10^{-5} $. If $0.100\,mol$ of this acid is dissolved in one litre of water the percentage of acid dissociated at equilibrium is closest to.....$\%$
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)
If degree of ionisation is $0.01$ of decimolar solution of weak acid $HA$ then $pKa$ of acid is
If the dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}},$ the $pH$ of a $ 0.1$ molar solution of the acid will be approximately