गॉस प्रमेय का उपयोग करके, विद्युत द्विध्रुव के कारण विद्युत क्षेत्र की तीव्रता ज्ञात करने के लिए गोलीय गॉसीय पृष्ठ लेना सुविधा जनक नहीं है क्योंकि
इस स्थिति में गॉस नियम से तीव्रता ज्ञात नहीं की जा सकेगी
इस प्रश्न में गोलीय सममितता नहीं है
कूलॉम नियम, गॉसीय नियम से अधिक मूलभूत है
गोलीय गॉसीय पृष्ठ द्विध्रुव आघूर्ण को बदल देगा
$x-y$ तल में एक विद्युत बल रेखा समीकरण ${x^2} + {y^2} = 1$ द्वारा दी गयी है। इस तल में बिन्दु $x = 1,\;y = 0$ पर प्रारम्भ में विराम अवस्था से एक इकाई धनावेशित कण
चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब
$R$ त्रिज्या तथा $L$ लम्बाई के एक बेलन को एकसमान वैद्युत क्षेत्र $E$ के अनुदिश अक्ष में रखा गया है, तो बेलन के पृष्ठ से सम्पूर्ण फ्लक्स हेतु व्यंजक है
एक आवेश Q को एक घन के किनारे पर रखा जाता है। इसकी प्रत्येक फलक से निकलने वाला वैधुत फ्लक्स होगा :
चित्र एक विद्युत् क्षेत्र के संगत कुछ विद्युत् क्षेत्र रेखाएँ प्रदर्शित करता है। चित्र बताता है कि