It is not convenient to use a spherical Gaussian surface to find the electric field due to an electric dipole using Gauss’s theorem because

  • A

    Gauss’s law fails in this case

  • B

    This problem does not have spherical symmetry

  • C

    Coulomb’s law is more fundamental than Gauss’s law

  • D

    Spherical Gaussian surface will alter the dipole moment

Similar Questions

If the electric field intensity in a fair weather atmosphere is $100 \,V / m$, then the total charge on the earth's surface is ............ $C$ (radius of the earth is $6400\,km$ )

Gauss’s law states that

  • [AIIMS 2017]

The electric field components in Figure are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0,$ in which $\alpha=800 \;N / C\, m ^{1 / 2} .$ Calculate

$(a)$ the flux through the cube, and

$(b)$ the charge within the cube. Assume that $a=0.1 \;m$

A point charge of $+\,12 \,\mu C$ is at a distance $6 \,cm$ vertically above the centre of a square of side $12\, cm$ as shown in figure. The magnitude of the electric flux through the square will be ....... $\times 10^{3} \,Nm ^{2} / C$

  • [JEE MAIN 2021]

Expression for an electric field is given by $\vec{E}=4000 x^2 \hat{i} \frac{V}{m}$. The electric flux through the cube of side $20\,cm$ when placed in electric field (as shown in the figure) is $.........V cm$.

  • [JEE MAIN 2023]