Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -

  • A

    $-\pi$

  • B

    $0$

  • C

    $\pi$

  • D

    $2\pi$

Similar Questions

The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is

Domain of $log\,log\,log\,  ....(x)$ is 

                        $ \leftarrow \,n\,\,times\, \to $

Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?