Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -
$-\pi$
$0$
$\pi$
$2\pi$
The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is
Domain of $log\,log\,log\, ....(x)$ is
$ \leftarrow \,n\,\,times\, \to $
Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.
The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-
If $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ ,where [.] denotes greatest integer function, then which of the following is false ?