1.Relation and Function
hard

Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is

A

$R-\left\{-\frac{1}{2}, \frac{1}{2}\right\}$

B

$(-\infty,-1] \cup[1, \infty) \cup\{0\}$

C

$\left(-\infty, \frac{-1}{2}\right) \cup\left(\frac{1}{2}, \infty\right) \cup\{0\}$

D

$\left(-\infty, \frac{-1}{\sqrt{2}}\right] \cup\left[\frac{1}{\sqrt{2}}, \infty\right) \cup\{0\}$

(JEE MAIN-2022)

Solution

$-1 \leq \frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi} \leq 1$

$-\pi / 2 \leq \sin ^{-1} \frac{1}{4 x^{2}-1} \leq \pi / 2$

Always $-1 \leq \frac{1}{4 x^{2}-1} \leq 1$

$x \in\left(\infty, \frac{1}{\sqrt{2}}\right) \cup\left[\frac{1}{\sqrt{2}}, \infty\right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.