જો $A = \{ {x_1},\,{x_2},\,............,{x_7}\} $ અને $B = \{ {y_1},\,{y_2},\,{y_3}\} $ બે ગણ છે કે જે અનુક્રમે સાત અને ત્રણ ઘટકો ધરાવે છે . તો ગણ $A$ માં બરાબર ત્રણ ઘટકો હોય કે જેથી $f(x)\, = y_2$ થાય તેવા $f : A \to B$  પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.

  • [JEE MAIN 2015]
  • A

    $14.{}^7{C_3}$

  • B

    $16.{}^7{C_3}$

  • C

    $14.{}^7{C_2}$

  • D

    $12.{}^7{C_2}$

Similar Questions

જો ચલિત વિધેય નો વક્ર બિંદુ $(3,4)$ આગળ સમિત હોય તો $\sum\limits_{r = 0}^6 {f(r) + f(3)} $ ની કિમત ...... થાય.

ધારો કે $S =\{1,2,3,4,5,6\}$ અને $P ( S )$ એ $S$ નો ઘાતગણ દર્શાવે છે.તો જયારે $n < m$ હોય ત્યારે $f(n) \subset f(m)$ થાય તેવા એક-એક વિધેયો $f: S \rightarrow P(S)$ ની સંખ્યા $........$ છે.

  • [JEE MAIN 2023]

ધારો કે $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ તો માત્ર $ x=-1 $ માટે $p\left( x \right) = 0$ તથા $p\left( { - 2} \right) = 2$ તો $p\left( 2 \right)$ મેળવો.

  • [AIEEE 2011]

ધારો કે $\mathrm{A}=\{1,3,7,9,11\}$ અને $\mathrm{B}=\{2,4,5,7,8,10,12\}$. તો $f(1)+f(3)=14$ થાય તેવા એક-એક વિધેયો $f: A \rightarrow B$ ની કુલ સંખ્યા .......... છે.

  • [JEE MAIN 2024]

$f(n)+\frac{1}{n} f( n +1)=1 \forall n \in\{1,2,3\}$ નું સમાધાન કરતા વિધેયો $f:\{1,2,3,4\} \rightarrow\{ a \in Z |a| \leq 8\}$ ની સંખ્યા $..........$ છે.

  • [JEE MAIN 2023]