વિધેય $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ નો વિસ્તાર ......... છે.
$\left[ {0,1} \right]$
$\left[ {0,\frac{1}{{\sqrt 2 }}} \right]$
$\left[ {0,\frac{1}{2}} \right]$
$\left[ {0,\frac{{\sqrt 3 }}{2}} \right]$
વિધેય $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ નિ મહત્તમ કિમત ......... થાય.
ધારોકે $A =\{1,2,3,4,5\}$ અને $B =\{1,2,3,4,5,6\}$. તો $f(1)+f(2)=f(4)-1$ નું સમાધાન કરતા વિધેયો $f: A \rightarrow B$ ની સંખ્યા $=.........$
જો $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ અને $y=f(x)$ એ વિધેય છે કે જેથી $\left| {f\left( \alpha \right) - \alpha } \right| \leqslant 1$,for $\alpha \in \left\{ {1,2,3,4} \right\}$ હોય તો વિધેયોની સંખ્યા .... થાય
જો $f : R \to R$ માટે વિધેય $f(x) = - \frac{{|x{|^5} + |x|}}{{1 + {x^4}}}$;હોય તો $f(x)$ નો ગ્રાફ .......... ચરણમાંથી પસાર થાય.
$log\,log\,log\, ....(x)$ નો પ્રદેશગણ મેળવો.
$ \leftarrow \,n\,\,times\, \to $