Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
$A = B$
$A \not\subset B$
$B \not\subset A$
$A \subset B$ and $B - A \ne \phi $
Solve $2 \cos ^{2} x+3 \sin x=0$
The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is
The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is