If $\sin \theta + \cos \theta = 1$ then the general value of $\theta $ is

  • [IIT 1981]
  • A

    $2n\pi $

  • B

    $n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{4}$

  • C

    $2n\pi + \frac{\pi }{2}$

  • D

    None of these

Similar Questions

The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for

The general solution of $\sin x - \cos x = \sqrt 2 $, for any integer $n$ is

The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is