The equation $5x^2+12x + 13 = 0$ and $ax^2+bx + c = 0$ have a common root, where $a,b,c$ are the sides of $\Delta ABC$,then find $\angle C$ ? .....$^o$
$45$
$60$
$90$
$30$
If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $
The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to
The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is
If $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to
If $K = sin^6x + cos^6x$, then $K$ belongs to the interval