જો ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , હોય તો $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ ની કિમત મેળવો 

  • A

    $\left( {\frac{{{2^{21}} - 1}}{{21}}} \right)$

  • B

    $\left( {\frac{{{3^{21}} - 1}}{{21}}} \right)$

  • C

    $\left( {\frac{{{2^{20}} - 1}}{{20}}} \right)$

  • D

    $\left( {\frac{{{3^{20}} - 1}}{{20}}} \right)$

Similar Questions

જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .

  • [AIEEE 2004]

$\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ નો સરવાળો. 

  • [AIEEE 2007]

${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.

જો ${C_0},{C_1},{C_2},.......,{C_n}$ એ દ્રીપદી સહગુણક છે , તો $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ = . . .

$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $

  • [JEE MAIN 2017]