Let $x, y, z > 0$ are respectively $2^{nd}, 3^{rd}, 4^{th}$ term of $G.P.$ and $\Delta  = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ , (where $r$ is common ratio), then $k=$ .......

  • A

    $-1$

  • B

    $ 1$

  • C

    $0$

  • D

    None of these

Similar Questions

Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.

If the system of equations

$x+y+z=2$

$2 x+4 y-z=6$

$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then 

  • [JEE MAIN 2020]

The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :

  • [JEE MAIN 2021]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$   are

The ordered pair $(a, b)$, for which the system of linear equations  $3 x-2 y+z=b$  ;  $5 x-8 y+9 z=3$  ;  $2 x+y+a z=-1$ has no solution, is

  • [JEE MAIN 2022]