3 and 4 .Determinants and Matrices
normal

If $n$  be the number of values of $x$ for which
matrix $\Delta (x) =\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2\\
2&x&{ - x}\\
x&{ - 2}&{ - x}
\end{array}} \right]$ will be singular, then $det(\Delta\,(n))$ is

$($ where $det(B)$ denotes determinant of Matrix $B) -$

A

$-8$

B

$-6$

C

$0$

D

$10$

Solution

$\left|\begin{array}{ccc}{-x} & {x} & {2} \\ {2} & {x} & {-x} \\ {x} & {-2} & {-x}\end{array}\right|=0 \Rightarrow x=2,-2$

$\Rightarrow \quad n=2 \quad \Rightarrow \quad \Delta(n)=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.