If $n$ be the number of values of $x$ for which
matrix $\Delta (x) =\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2\\
2&x&{ - x}\\
x&{ - 2}&{ - x}
\end{array}} \right]$ will be singular, then $det(\Delta\,(n))$ is
$($ where $det(B)$ denotes determinant of Matrix $B) -$
$-8$
$-6$
$0$
$10$
For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $
The values of $\alpha$, for which $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$, lie in the interval
If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to
If $[x]$ denotes the greatest integer $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$
$[cot \,\theta ] x + y = 0$
The system of linear equation $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ then