જો $x, y, z > 0$ અનુક્રમે સમગુણોતર શ્રેણીના $2^{nd}, 3^{rd}, 4^{th}$ પદ હોય અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ મેળવો. ( કે જ્યાં $r$ એ સામાન્ય ગુણોતર છે . ) $k=$ .......
$-1$
$ 1$
$0$
એકપણ નહીં.
જો $p + q + r = 0 = a + b + c$, તો $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|= . . . $
જો $B$ એ $3 \times 3$ શ્રેણિક છે કે જેથી $B^2 = 0$, તો $|( I+ B)^{50} -50B|$ = . . .
જો $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (કે જ્યાં $ x, y, z $ બધા શૂન્ય ન હોય) તો $x = 0$, $y = 0$, $z = 0$ સિવાય નો ઉકેલ હોય તો $ a, b $ અને $c$ વચ્ચેનો સંબંધ મેળવો.
ધારોકે $\alpha \beta \neq 0$ અને $\mathrm{A}=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. જો $B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ એ $A$ ના ઘટકોના સહઅવયવો નો શ્રેણિક હોય, તો $\operatorname{det}(A B)=$ ............
સુરેખ સમીકરણ સંહતિ
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
માટે નીચેના માથી ક્યૂ સાચું નથી?