Let $P$ be a variable point on the ellipse $x^2 + 3y^2 = 3$ , then the maximum perpendicular distance of $P$ from the line $x -y = 10$ is

  • A

    $3\sqrt 2 $

  • B

    $4\sqrt 2 $

  • C

    $6\sqrt 2 $

  • D

    $5\sqrt 2 $

Similar Questions

The equation of the normal at the point $(2, 3)$ on the ellipse $9{x^2} + 16{y^2} = 180$, is

Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle 

Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .

The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points

  • [IIT 2009]

If the ellipse $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ meets the line $\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$ on the $x$-axis and the line $\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$ on the $y$-axis, then the eccentricity of the ellipse is

  • [JEE MAIN 2022]

An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is

  • [KVPY 2014]