Let $P$ be a variable point on the ellipse $x^2 + 3y^2 = 3$ , then the maximum perpendicular distance of $P$ from the line $x -y = 10$ is

  • A

    $3\sqrt 2 $

  • B

    $4\sqrt 2 $

  • C

    $6\sqrt 2 $

  • D

    $5\sqrt 2 $

Similar Questions

Let the equations of two ellipses be ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ and ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1,$ If the product of their eccentricities is $\frac {1}{2},$ then the length of the minor axis of ellipse $E_2$ is

  • [JEE MAIN 2013]

The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is

In a triangle $A B C$ with fixed base $B C$, the vertex $A$ moves such that $\cos B+\cos C=4 \sin ^2 \frac{A}{2} .$ If $a, b$ and $c$ denote the lengths of the sides of the triangle opposite to the angles $A, B$ and $C$, respectively, then

$(A)$ $b+c=4 a$

$(B)$ $b+c=2 a$

$(C)$ locus of point $A$ is an ellipse

$(D)$ locus of point $A$ is a pair of straight lines

  • [IIT 2009]

If the normal at any point $P$ on the ellipse cuts the major and minor axes in $G$ and $g$ respectively and $C$ be the centre of the ellipse, then