If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
$\frac{1}{\sqrt2}$
$\frac{\sqrt3}{2}$
$\frac{1}{\sqrt3}$
$\frac{1}{2}$
If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :
Tangents are drawn from points onthe circle $x^2 + y^2 = 49$ to the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{24}} = 1$ angle between the tangents is
In a group of $100$ persons $75$ speak English and $40$ speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $\alpha$ and the number of persons who speak only Hindi is $\beta$, then the eccentricity of the ellipse $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ is $.......$
The foci of the ellipse $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ are at
If $m$ is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12\; m ^{2}$ is equal to