Gujarati
Hindi
13.Oscillations
medium

Let $T_1$ and $T_2$ be the time periods of two springs $A$ and $B$ when a mass $m$ is suspended from them separately. Now both the springs are connected in parallel  and same mass $m$ is suspended with them. Now let $T$ be the time period in this position. Then

A

$T = T_1+ T_2$

B

$T =  \frac{T_1T_2}{T_1+ T_2}$

C

$T^2 = T_1^2 + T_2^2$

D

$\frac{1}{T^2} =\frac{1}{T_1^2}+\frac{1}{T_2^2}$

Solution

$\mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{1}}} \quad$ or  $\mathrm{k}_{1}=\frac{4 \pi^{2} \mathrm{m}}{\mathrm{T}_{1}^{2}}$

${\mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{2}}}}  {\text { or } \quad \mathrm{k}_{2}=\frac{4 \pi^{2} \mathrm{m}}{\mathrm{T}_{2}^{2}}}$

${\mathrm{Now} \quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{2}}}}  {\text { or } \quad \mathrm{k}=\frac{4 \pi^{2} \mathrm{m}}{\mathrm{T}_{2}^{2}}}$

In parallel $\mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}$

Substituting the values of $\mathrm{k}, \mathrm{k}_{1}$ and $\mathrm{k}_{2}$ we get:

$\frac{1}{\mathrm{T}^{2}}=\frac{1}{\mathrm{T}_{1}^{2}}+\frac{1}{\mathrm{T}_{2}^{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.