- Home
- Standard 11
- Physics
13.Oscillations
hard
When a particle of mass $m$ is attached to a vertical spring of spring constant $k$ and released, its motion is described by $y ( t )= y _{0} \sin ^{2} \omega t ,$ where $'y'$ is measured from the lower end of unstretched spring. Then $\omega$ is
A
$\sqrt{\frac{g}{y_{0}}}$
B
$\sqrt{\frac{g}{2 y_{0}}}$
C
$\frac{1}{2} \sqrt{\frac{g}{y_{0}}}$
D
$\sqrt{\frac{2 g}{y_{0}}}$
(JEE MAIN-2020)
Solution

$y = y _{0} \sin ^{2} \omega t$
$y =\frac{ y _{0}}{2}(1-\cos 2 \omega t )$
$y -\frac{ y _{0}}{2}=-\frac{ y _{0}}{2} cos 2 \omega t$
Amplitude : $\frac{y_{0}}{2}$
$\frac{y_{0}}{2}=\frac{m g}{K}$
$2 \omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{2 g}{y_{0}}}$
$\omega=\sqrt{\frac{g}{2 y_{0}}}$
Standard 11
Physics
Similar Questions
medium