13.Nuclei
medium

Let $N_{\beta}$ be the number of $\beta $ particles emitted by $1$ gram of $Na^{24}$ radioactive nucler (half life $= 15\, hrs$) in $7.5\, hours$, $N_{\beta}$ is close to (Avogadro number $= 6.023\times10^{23}\,/g.\, mole$)

A

$6.2\times10^{21}$

B

$7.5\times10^{21}$

C

$1.25\times10^{22}$

D

$1.75\times10^{22}$

(JEE MAIN-2015)

Solution

We know that $N_{\beta}=N_{0}\left(1-e^{-\lambda t}\right)$

$N_{\beta}=\frac{6.023 \times 10^{23}}{24} \cdot\left[1-e^{\left(-\frac{\ln ^{2} }{15} \times 75\right)}\right]$

on solving we get, $\mathrm{N}_{\beta}=7.4 \times 10^{21}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.