3 and 4 .Determinants and Matrices
hard

Let $A$ and $B$ be real matrices of the form $\left[ {\begin{array}{*{20}{c}}
\alpha &0\\
0&\beta 
\end{array}} \right]$ and $\left[ {\begin{array}{*{20}{c}}
0&\gamma \\
\delta &0
\end{array}} \right]$, respectively

Statement $1$ : $AB - BA$ is always an invertible matrix

Statement $2$ : $AB -BA$ is never an identity matrix

A

Statement $1$ is true, Statement $2$ is false

B

Statement $1$ is false, Statement $2$ is true

C

Statement $1$ is true, Statement $2$ is true;Statement $2$ is a correct explanation of Statement $1$.

D

Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation of Statement $1$.

(AIEEE-2012)

Solution

Let $A$ and $B$ be real matrices such that 

$A = \left[ {\begin{array}{*{20}{c}}
\alpha &0\\
0&\beta 
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
0&\lambda \\
\delta &0
\end{array}} \right]$

Now, $AB = \left[ {\begin{array}{*{20}{c}}
0&{\alpha \gamma }\\
{\beta \delta }&0
\end{array}} \right]$

and $BA = \left[ {\begin{array}{*{20}{c}}
0&{\gamma \beta }\\
{\delta \alpha }&0
\end{array}} \right]$

Statement – $1$:

$AB – BA = \left[ {\begin{array}{*{20}{c}}
0&{\gamma \left( {\alpha  – \beta } \right)}\\
{\delta \left( {\beta  – \alpha } \right)}&0
\end{array}} \right]$

$\left| {AB – BA} \right| = {\left( {\alpha  – \beta } \right)^2}\delta  \ne 0$

$\therefore AB – BA$is always an invertible matrix.

Hence, statement – $1$ is true.

But $AB – BA$ can be identity matrix if $\gamma  =  – \delta $ or $\delta  =  – \gamma $

So, statement – -$2$ is false.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.