Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
 ; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation

  • [JEE MAIN 2019]
  • A

    ${\lambda ^2} - \lambda  - 6\, = 0$

  • B

    ${\lambda ^2} - 3\lambda  - 4 = 0$

  • C

    ${\lambda ^2} + 3\lambda  - 4 = 0$

  • D

    ${\lambda ^2} + \lambda  - 6 = 0$

Similar Questions

Let $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ where $0 \leq \theta \leq 2 \pi$. Then

Let $P $ and $Q $ be $3×3$ matrices $P \ne Q$. If ${P^3} = {Q^3},{P^2}Q = {Q^2}P$ then determinant of $\det \left( {{P^2} + {Q^2}} \right)$ is equal to :

  • [AIEEE 2012]

If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $

  • [JEE MAIN 2014]

If $A, B, C$ are the angles of triangle then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {\sin \,2A}&{\sin \,C}&{\sin \,B} \\ 
  {\sin \,C}&{\sin \,2B}&{\sin A} \\ 
  {\sin \,B}&{\sin \,A}&{\sin \,2C} 
\end{array}} \right|$ is

For the system of linear equations

$2 x+4 y+2 a z=b$

$x+2 y+3 z=4$

$2 x-5 y+2 z=8$

which of the following is NOT correct?

  • [JEE MAIN 2023]