माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है
${\lambda ^2} - \lambda - 6\, = 0$
${\lambda ^2} - 3\lambda - 4 = 0$
${\lambda ^2} + 3\lambda - 4 = 0$
${\lambda ^2} + \lambda - 6 = 0$
यदि $A =\left[\begin{array}{lcl}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ हो, तो सही $\theta \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$ के लिये $\operatorname{det}( A )$ किस अन्तराल में स्थित होगा
$\lambda$ तथा $\mu$ के क्रमश: मान, जिनके लिए समीकरण निकाय $x+y+z=2$, $x+2 y+3 z=5$, $x+3 y+\lambda z=\mu$ के असंख्य हल हैं
माना $\alpha, \beta, \gamma$ समीकरण $x ^{3}+ ax ^{2}+ bx + c =0$, $(a, b, c \in R$ तथा $a, b \neq 0)$ के वास्तविक मूल हैं। यदि $u , v , w$ में समीकरण निकाय $\alpha u +\beta v +\gamma w =0$, $\beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ का अतुच्छ हल है, तो $\frac{a^{2}}{b}$ का मान है
$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
यदि $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ तो $x$ का मान होगा