જો $\lambda $ એ વાસ્તવિક સંખ્યા છે કે જેથી સુરેખ સમીકરણો $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ ને અનંત ઉકેલ ધરાવે છે તો $\lambda $ તો એ . . . દ્રીઘાત સમીકરણનું બીજ થશે.
${\lambda ^2} - \lambda - 6\, = 0$
${\lambda ^2} - 3\lambda - 4 = 0$
${\lambda ^2} + 3\lambda - 4 = 0$
${\lambda ^2} + \lambda - 6 = 0$
$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ = . . .
જો સમીકરણ સંહતિ
$ x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 $
$ x+(\cos \alpha) y+(\sin \alpha) z=0 $
$ x+(\sin \alpha) y-(\cos \alpha) z=0$
ને એક અસામાન્ય ઉકેલ હોય, તો $\alpha \in\left(0, \frac{\pi}{2}\right)$ બરાબર ............ છે.
જો ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, તો ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $
જો ત્રિકોણનું ક્ષેત્રફળ $5$ એકમ હોય અને તેના બે શિરોબિંદુ $A(2, 1), B(3, -2)$ હોય અને ત્રીજું શિરોબિંદુ રેખા $y = x + 3$ પર આવેલ હોય તો ત્રીજા શિરોબિંદુના યામ મેળવો.
જો $A\, = \,\left[ \begin{gathered}
1\ \ \ \,1\ \ \ \,2\ \ \ \hfill \\
0\ \ \ \,2\ \ \ \,1\ \ \ \hfill \\
1\ \ \ \,0\ \ \ \,2\ \ \ \hfill \\
\end{gathered} \right]$ અને $A^3 = (aA-I) (bA-I)$,કે જ્યાં $a, b$ એ પૃણાંક છે અને એકમ શ્રેણિક $I$ ની કક્ષા $3 × 3$ હોય તો $(a + b)$ મેળવો.