4-1.Complex numbers
hard

माना $z \in C$ जिसके लिए $\operatorname{Im}( z )=10$ तथा किसी प्राकृत संख्या $n$ के लिए यह $\frac{2 z - n }{2 z + n }=2 i -1$ को संतुष्ट करता हैं, तो 

A

$n = 40$ तथा $Re(z) = 10$

B

$n = 20$ तथा $Re(z) = 10$

C

$n = 40$ तथा $Re(z) = -10$

D

$n = 20$ तथा $Re(z) = -10$

(JEE MAIN-2019)

Solution

Let $z=x+10 i$

given $\frac{2 z-n}{2 z+n}=2 i-1$

$\Rightarrow \frac{2(x+10 i)-n}{2(x+10 i)+n}=2 i-1$

$\Rightarrow(2 x-n)+20 i=(2 i-1)[(2 x+n)+20 i]$

Comparing real and imaginary part

$\Rightarrow 2 x-n=2(-20)-(2 x+n)$ and $20=2(2 x+n)-20$

$\Rightarrow 2 x-n=-40-2 x-n$ and $20=4 x+2 n-20$

$\Rightarrow 4 x=-40$ and $4 x+2 n=40$

$\Rightarrow x=-10$ and $-40+2 n=40$

$\Rightarrow n=40$

$\Rightarrow n=40$ and $\operatorname{Re}(z)=-10$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.