4-1.Complex numbers
medium

यदि $x + iy = \frac{3}{{2 + \cos \theta  + i\sin \theta }}$, तो ${x^2} + {y^2}$ बराबर है

A

$3x - 4$

B

$4x - 3$

C

$4x + 3$

D

इनमें से कोई नहीं

Solution

(b) यदि $x + iy = \frac{3}{{2 + \cos \theta  + i\sin \theta }}$

$ = \frac{{3(2 + \cos \theta  – i\sin \theta )}}{{{{(2 + \cos \theta )}^2} + {{\sin }^2}\theta }} = \frac{{6 + 3\cos \theta  – 3i\sin \theta }}{{4 + {{\cos }^2}\theta  + 4\cos \theta  + {{\sin }^2}\theta }}$

$ = \left[ {\frac{{6 + 3\cos \theta }}{{5 + 4\cos \theta }}} \right] + i\,\left[ {\frac{{ – 3\sin \theta }}{{5 + 4\cos \theta }}} \right]$

$⇒ $ $x = \frac{{3(2 + \cos \theta )}}{{5 + 4\cos \theta }},y = \frac{{ – 3\sin \theta }}{{5 + 4\cos \theta }}$

${x^2} + {y^2} = \frac{9}{{{{(5 + 4\cos \theta )}^2}}}$

$[4 + {\cos ^2}\theta  + 4\cos \theta  + {\sin ^2}\theta ]$

 $ = \frac{9}{{5 + 4\cos \theta }} = 4\left[ {\frac{{6 + 3\cos \theta }}{{5 + 4\cos \theta }}} \right] – 3 = 4x – 3$

ट्रिक : $x + iy = \frac{{3(2 + \cos \theta  – i\sin \theta )}}{{(2 + \cos \theta  + i\sin \theta )(2 + \cos \theta  – i\sin \theta )}}$

माना  $y = 0$, तब  $\sin \theta  = 0$ अर्थात् $\theta  = 0$.

$x = 1$ रखने पर, ${x^2} + {y^2} = {1^2} + 0 = 1$.

एवं विकल्प (b) में रखने पर,$4(1) -3=1$ देता है

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.