Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find  $P(A \cap B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P(A)=0.3$ and $P(B)=0.4$

If $\mathrm{A}$ and $\mathrm{B}$ are independent events, then

$P(A \cap B)=P(A) P(B)=0.3 \times 0.4=0.12$

Similar Questions

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$

Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is

The probability of happening at least one of the events $A$ and $B$ is $0.6$. If the events $A$ and $B$ happens simultaneously with the probability $0.2$, then $P\,(\bar A) + P\,(\bar B) = $

  • [IIT 1987]

An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :

$\mathrm{P}$ $( A$ fails $)=0.2$

$P(B$ fails alone $)=0.15$

$P(A$ and $ B $ fail $)=0.15$

Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$

A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be either red or blue.