14.Probability
medium

Let $A$ and $B $ be two events such that  $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are

A

independent but not equally likely..

B

independent but  equally likely.

C

mutually exclusive and independent.

D

equally likely but not independent.

(AIEEE-2005) (JEE MAIN-2014)

Solution

$P(\overline{A \cup B})=\frac{1}{6}$

$P(A \cap B)=\frac{1}{4}$

$P(\bar{A})=\frac{1}{4}$

$\text { clearly } \mathrm{P}(\mathrm{A})=\frac{3}{4}$

$\text { and } \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{5}{6}$

$P(A)+P(B)-P(A \cap B)=\frac{5}{6}$

$\frac{3}{4}+P(B)-\frac{1}{4}=\frac{5}{6}$

$P(B)=\frac{5}{6}-\frac{3}{4}+\frac{1}{4}=\frac{1}{3}$

$P(A \cap B)=\frac{1}{4}$

$P(A) \cdot P(B)=\frac{3}{4} \frac{1}{3}=\frac{1}{4} \text { so independent }$

$\mathrm{P}(\mathrm{A}) \neq \mathrm{P}(\mathrm{B}) \text { so not equally likely }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.