मान लीजिए कि कक्षा $X$ के सभी $50$ विद्यार्थियों का समुच्चय $A$ है। मान लीजिए $f: A \rightarrow N , f(x)=$ विद्यार्थी $x$ का रोल नंबर, द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f$ एकैकी है किंतु आच्छादक नहीं है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

No two different students of the class can have same roll number. Therefore, $f$ must be one-one. We can assume without any loss of generality that roll numbers of students are from $1$ to $50 .$ This implies that $51$ in $N$ is not roll number of any student of the class, so that $51$ can not be image of any element of $X$ under $f$. Hence, $f$ is not onto.

Similar Questions

यादि $f(x) = \sin \log x$, तब $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ का मान है

फलन $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ का आरेख नीचे दर्शाया गया है. यदि $f_1(x)=f(x)$ और $n \geq$ 1 के लिए $f_{n+1}(x)=f\left(f_n(x)\right)$.

तब निम्न कथनों:

$I$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=0$.

$II$. अनंत $x \in[0,1]$ संभब है यदि $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$.

$III$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=1$.

$IV$. अन्त $x \in[0,1]$ सभव है यदि $\lim _{n \rightarrow \infty} f_n(x)$ का अस्तित्व नहीं है.

में से कौन से कथन सत्य है

  • [KVPY 2016]

यदि $f(x + ay,\;x - ay) = axy$, तब $f(x,\;y) =$

माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______. 

  • [JEE MAIN 2023]

माना $c , k \in R$ है। यदि $f ( x )=( c +1) x ^2+\left(1- c ^2\right)$ $x +2 k$ तथा $f ( x + y )= f ( x )+ f ( y )- xy , \forall x$, $y \in R$ है, तो $\mid 2(f(1)+f(2)+f(3)+$ $+ f (20)) \mid$ का मान है $..........$

  • [JEE MAIN 2022]