सिद्ध कीजिए कि $f(x)=x^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ न तो एकैकी है और न आच्छादक है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $f(-1)=1=f(1), \,f$ is not oneone. Also, the element $-2$ in the co-domain $R$ is not image of any element $x$ in the domain $R$ (Why ?). Therefore $f$ is not onto.

864-s40

Similar Questions

सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: R \rightarrow R$, एकैकी तथा आच्छादक है।

सिद्ध कीजिए कि $f(x)=x^{3}$ द्वारा प्रदत्त फलन $f: R \rightarrow R$ एकैक (Injective) है।

माना $f ( x )= ax ^2+ bx + c$ है, जिसके लिए $f (1)=3, f (-2)=\lambda$ तथा $f (3)=4$. हैं। यदि $f (0)+ f (1)+ f (-2)+ f (3)=14$ है, तो $\lambda$ बराबर है

  • [JEE MAIN 2022]

$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ द्वारा परिभाषित फलन का प्रांत है 

  • [JEE MAIN 2019]

माना कि एक फलन $f: R \rightarrow R$ सभी $x , y \in R$ के लिए $f( x + y )=f( x ) f( y )$ को संतुष्ट करता है तथा $f(1)=3$ है। यदि $\sum_{i=1}^{ n } f( i )=363$, तो $n$ बराबर है

  • [JEE MAIN 2020]