Let $R$ be a relation on the set $A$ of ordered pairs of positive integers defined by $(x, y) R (u, v)$ if and only if $x v=y u .$ Show that $R$ is an equivalence relation.
Clearly, $(x, y)$ $R (x, y)$, $\forall \,\,(x, y) \in A$, since $x y=y x .$ This shows that $R$ is reflexive. Further, $(x, y) R (u, v)$ $ \Rightarrow x v=y u$ $ \Rightarrow u y=v x$ and hence $(u, v) \,R (x, y) .$ This shows that $R$ is symmetric. Similarly, $(x, y) R (u, v)$ and $(u, v)$ $R$ $(a, b) \Rightarrow x v=y u$ and $u b=v a \Rightarrow $ $x v \frac{a}{u}=y u \frac{a}{u} $ $\Rightarrow x v \frac{b}{v}=$ $y u \frac{a}{u} \Rightarrow $ $x b=y a$ and hence $(x, y) \,R (a, b) .$ Thus, $R$ is transitive. Thus, $R$ is an equivalence relation.
Let $N$ be the set of natural numbers greater than $100. $ Define the relation $R$ by : $R = \{(x,y) \in \,N × N :$ the numbers $x$ and $y$ have atleast two common divisors$\}.$ Then $R$ is-
Let $S$ be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on $S$ is
Let $\mathrm{A}=\{1,2,3,4,5\}$. Let $\mathrm{R}$ be a relation on $\mathrm{A}$ defined by $x R y$ if and only if $4 x \leq 5 y$. Let $m$ be the number of elements in $\mathrm{R}$ and $\mathrm{n}$ be the minimum number of elements from $\mathrm{A} \times \mathrm{A}$ that are required to be added to $\mathrm{R}$ to make it a symmetric relation. Then $m+n$ is equal to:
The relation $R =\{( a , b ): \operatorname{gcd}( a , b )=1,2 a \neq b , a , b \in Z \}$ is:
Let $A=\{1,2,3\} .$ Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is