The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is
$0$
$1$
$2$
$3$
Let a relation $R$ be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then ${R^{ - 1}}oR$ is
Let $R$ and $S$ be two relations on a set $A$. Then
Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$
Let $A=\{-4,-3,-2,0,1,3,4\}$ and $R =\{( a , b ) \in A$ $\times A : b =| a |$ or $\left.b ^2= a +1\right\}$ be a relation on $A$. Then the minimum number of elements, that must be added to the relation $R$ so that it becomes reflexive and symmetric, is $........$.
Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation $R$ is