The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are

  • A

    $[8] \cup   [6]$

  • B

    $[8] \cup   [14]$

  • C

    $[6] \cup   [13]$

  • D

    $[8] \cup   [6] \cup   [13]$

Similar Questions

If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $

The Cartesian product $A$ $\times$ $A$ has $9$ elements among which are found $(-1,0)$ and $(0,1).$ Find the set $A$ and the remaining elements of $A \times A$.

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$A \times(B \cap C)$

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$(A \times B) \cap(A \times C)$

If $P=\{a, b, c\}$ and $Q=\{r\},$ form the sets $P \times Q$ and $P \times Q$ Are these two products equal?