3 and 4 .Determinants and Matrices
hard

જો $0 \leq \theta \leq 2 \pi$ માટે $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ હોય, તો 

A

$\operatorname{Det}(\mathrm{A})=0$

B

$\operatorname{Det}(\mathrm{A}) \in[2,4]$

C

$Det$ $(\mathrm{A}) \in(2, \infty)$

D

$\operatorname{Det}(\mathrm{A}) \in(2,4)$

Solution

$A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$

$\therefore|A|=1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right)$

$=1+\sin ^{2} \theta+\sin ^{2} \theta+1$

$=2+2 \sin ^{2} \theta$

$=2\left(1+\sin ^{2} \theta\right)$

Now, $0 \leq \theta \leq 2 \pi$

$\Rightarrow 0 \leq \sin \theta \leq 1$

$\Rightarrow 0 \leq \sin ^{2} \theta \leq 1$

$\Rightarrow 1 \leq 1+\sin ^{2} \theta \leq 2$

$\Rightarrow 2 \leq 2\left(1+\sin ^{2} \theta\right) \leq 4$

$\therefore \operatorname{Det}(A) \in[2,4]$

Hence, the correct answer is $B$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.