3 and 4 .Determinants and Matrices
medium

The maximum value of

$f(x)=\left|\begin{array}{ccc} \sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x \end{array}\right|, x \in R \text { is }$

A

$\sqrt{7}$

B

$\frac{3}{4}$

C

$\sqrt{5}$

D

$5$

(JEE MAIN-2021)

Solution

$C _{1}+ C _{2} \rightarrow C _{1}$

$\left|\begin{array}{ccc}2 & 1+\cos ^{2} x & \cos 2 x \\ 2 & \cos ^{2} x & \cos 2 x \\ 1 & \cos ^{2} x & \sin 2 x\end{array}\right|$

$R _{1}- R _{2} \rightarrow R _{1}$

$\left|\begin{array}{ccc}0 & 1 & 0 \\ 2 & \cos ^{2} x & \cos 2 x \\ 1 & \cos ^{2} x & \sin 2 x\end{array}\right|$

Open w.r.t. $R _{1}$

$-(2 \sin 2 x-\cos 2 x)$

$\cos 2 x-2 \sin 2 x=f(x)$

$\left. f ( x )\right|_{\max }=\sqrt{1+4}=\sqrt{5}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.