Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$

Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Clearly $A ^{\prime}=\{1,4,5,6\}, B ^{\prime}=\{1,2,6\} .$ Hence $A ^{\prime} \cap B ^{\prime}=\{1,6\}$

Also $A \cup B = \{ 2,3,4,5\} ,$ so that ${(A \cup B)^\prime } = \{ 1,6\} $

$( A \cup B )^{\prime}=\{1,6\}= A ^{\prime} \cap B ^{\prime}$

 It can be shown that the above result is true in general. If $A$ and $B$ are any two subsets of the universal set $U,$ then

${(A \cup B)^\prime } = {A^\prime } \cap {B^\prime }$. Similarly, ${(A \cup B)^\prime } = {A^\prime } \cap {B^\prime }.$ These two results are stated in words as follows:

Similar Questions

Let $\mathrm{U}$ be universal set of all the students of Class $\mathrm{XI}$ of a coeducational school and $\mathrm{A}$ be the set of all girls in Class $\mathrm{XI}$. Find $\mathrm{A}'.$

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find

$\left(A^{\prime}\right)^{\prime}$

Let $n(U) = 700,\,n(A) = 200,\,n(B) = 300$ and $n(A \cap B) = 100,$ then $n({A^c} \cap {B^c}) = $

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{x: 2 x+5=9\}$

Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)