$U=\{1,2,3,4,5,6\}, A=\{2,3\}$ અને $B=\{3,4,5\}.$ $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ શોધો અને તે પરથી બતાવો કે $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Clearly $A ^{\prime}=\{1,4,5,6\}, B ^{\prime}=\{1,2,6\} .$ Hence $A ^{\prime} \cap B ^{\prime}=\{1,6\}$

Also $A \cup B = \{ 2,3,4,5\} ,$ so that ${(A \cup B)^\prime } = \{ 1,6\} $

$( A \cup B )^{\prime}=\{1,6\}= A ^{\prime} \cap B ^{\prime}$

 It can be shown that the above result is true in general. If $A$ and $B$ are any two subsets of the universal set $U,$ then

${(A \cup B)^\prime } = {A^\prime } \cap {B^\prime }$. Similarly, ${(A \cup B)^\prime } = {A^\prime } \cap {B^\prime }.$ These two results are stated in words as follows:

Similar Questions

$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. $(A \cup C)^{\prime}$ મેળવો 

જો $U$ એ સાવત્રિક ગણ છે અને $A \cup B \cup C = U$ થાય તો $\{ (A - B) \cup (B - C) \cup (C - A)\} '=$

$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. નીચેના ગણ શોધો : $\left(A^{\prime}\right)^{\prime}$

$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. $A^{\prime}$ મેળવો 

જો  $A$ એ કોઈ ગણ હોય તો. . . .